Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Identification of low temperature stress regulated transcript sequences and gene families in Italian cypress.

Identifieur interne : 001C98 ( Main/Exploration ); précédent : 001C97; suivant : 001C99

Identification of low temperature stress regulated transcript sequences and gene families in Italian cypress.

Auteurs : Nicola La Porta [Italie] ; Gaurav Sablok ; Giovanni Emilliani ; Ari M. Hietala ; Alessio Giovannelli ; Paolo Fontana ; Emilio Potenza ; Paolo Baldi

Source :

RBID : pubmed:25534982

Descripteurs français

English descriptors

Abstract

Cold acclimation is a complex transcriptionally controlled process regulated by many different genes and genic-interactions in plants. The northward spreading of woody species is mainly limited by winter harshness. To increase our knowledge about the biological processes underlying cold acclimation, plants evolved in warmer climates can serve as models. In this work, a Suppression Subtractive Hybridization approach using PCR-select was used to isolate Italian cypress (Cupressus sempervirens L.) transcript sequences putatively expressed under low temperature stress. After assessing the reliability of the subtractive step, a total of 388 clones were selected and sequenced. Following sequence assembly and removal of the redundant cDNAs, 156 unique transcripts were identified and annotated in order to assign them a putative functional class. Most of the identified transcripts were functionally classified pertaining to stress in cellular and chloroplast membranes, which are previously known to be severely damaged by cold treatment. Among the identified functional gene families, the extensively represented ones were dehydrins, early light-inducible proteins, senescence-associated genes and oleosins. The last three gene families were further selected for phylogenetic analysis, with the corresponding protein sequences across the complete genomes of the model plants Populus trichocarpa, Vitis vinifera, Physcomitrella patens, and Arabidopsis thaliana. The relationship with the ortholog sequences coming from these species and their further implications are discussed.

DOI: 10.1007/s12033-014-9833-2
PubMed: 25534982


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Identification of low temperature stress regulated transcript sequences and gene families in Italian cypress.</title>
<author>
<name sortKey="La Porta, Nicola" sort="La Porta, Nicola" uniqKey="La Porta N" first="Nicola" last="La Porta">Nicola La Porta</name>
<affiliation wicri:level="1">
<nlm:affiliation>IASMA Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Trento, Italy, nicola.laporta@fmach.it.</nlm:affiliation>
<country wicri:rule="url">Italie</country>
<wicri:regionArea>IASMA Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Trento, Italy</wicri:regionArea>
<wicri:noRegion>Italy</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sablok, Gaurav" sort="Sablok, Gaurav" uniqKey="Sablok G" first="Gaurav" last="Sablok">Gaurav Sablok</name>
</author>
<author>
<name sortKey="Emilliani, Giovanni" sort="Emilliani, Giovanni" uniqKey="Emilliani G" first="Giovanni" last="Emilliani">Giovanni Emilliani</name>
</author>
<author>
<name sortKey="Hietala, Ari M" sort="Hietala, Ari M" uniqKey="Hietala A" first="Ari M" last="Hietala">Ari M. Hietala</name>
</author>
<author>
<name sortKey="Giovannelli, Alessio" sort="Giovannelli, Alessio" uniqKey="Giovannelli A" first="Alessio" last="Giovannelli">Alessio Giovannelli</name>
</author>
<author>
<name sortKey="Fontana, Paolo" sort="Fontana, Paolo" uniqKey="Fontana P" first="Paolo" last="Fontana">Paolo Fontana</name>
</author>
<author>
<name sortKey="Potenza, Emilio" sort="Potenza, Emilio" uniqKey="Potenza E" first="Emilio" last="Potenza">Emilio Potenza</name>
</author>
<author>
<name sortKey="Baldi, Paolo" sort="Baldi, Paolo" uniqKey="Baldi P" first="Paolo" last="Baldi">Paolo Baldi</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25534982</idno>
<idno type="pmid">25534982</idno>
<idno type="doi">10.1007/s12033-014-9833-2</idno>
<idno type="wicri:Area/Main/Corpus">001E64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001E64</idno>
<idno type="wicri:Area/Main/Curation">001E64</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001E64</idno>
<idno type="wicri:Area/Main/Exploration">001E64</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Identification of low temperature stress regulated transcript sequences and gene families in Italian cypress.</title>
<author>
<name sortKey="La Porta, Nicola" sort="La Porta, Nicola" uniqKey="La Porta N" first="Nicola" last="La Porta">Nicola La Porta</name>
<affiliation wicri:level="1">
<nlm:affiliation>IASMA Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Trento, Italy, nicola.laporta@fmach.it.</nlm:affiliation>
<country wicri:rule="url">Italie</country>
<wicri:regionArea>IASMA Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Trento, Italy</wicri:regionArea>
<wicri:noRegion>Italy</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Sablok, Gaurav" sort="Sablok, Gaurav" uniqKey="Sablok G" first="Gaurav" last="Sablok">Gaurav Sablok</name>
</author>
<author>
<name sortKey="Emilliani, Giovanni" sort="Emilliani, Giovanni" uniqKey="Emilliani G" first="Giovanni" last="Emilliani">Giovanni Emilliani</name>
</author>
<author>
<name sortKey="Hietala, Ari M" sort="Hietala, Ari M" uniqKey="Hietala A" first="Ari M" last="Hietala">Ari M. Hietala</name>
</author>
<author>
<name sortKey="Giovannelli, Alessio" sort="Giovannelli, Alessio" uniqKey="Giovannelli A" first="Alessio" last="Giovannelli">Alessio Giovannelli</name>
</author>
<author>
<name sortKey="Fontana, Paolo" sort="Fontana, Paolo" uniqKey="Fontana P" first="Paolo" last="Fontana">Paolo Fontana</name>
</author>
<author>
<name sortKey="Potenza, Emilio" sort="Potenza, Emilio" uniqKey="Potenza E" first="Emilio" last="Potenza">Emilio Potenza</name>
</author>
<author>
<name sortKey="Baldi, Paolo" sort="Baldi, Paolo" uniqKey="Baldi P" first="Paolo" last="Baldi">Paolo Baldi</name>
</author>
</analytic>
<series>
<title level="j">Molecular biotechnology</title>
<idno type="eISSN">1559-0305</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Cold Temperature (MeSH)</term>
<term>Cupressus (genetics)</term>
<term>Cupressus (physiology)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>Molecular Sequence Annotation (MeSH)</term>
<term>Multigene Family (MeSH)</term>
<term>Phylogeny (MeSH)</term>
<term>Plant Proteins (genetics)</term>
<term>RNA, Messenger (analysis)</term>
<term>RNA, Plant (analysis)</term>
<term>Stress, Physiological (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (analyse)</term>
<term>ARN messager (analyse)</term>
<term>Annotation de séquence moléculaire (MeSH)</term>
<term>Basse température (MeSH)</term>
<term>Cupressus (génétique)</term>
<term>Cupressus (physiologie)</term>
<term>Famille multigénique (MeSH)</term>
<term>Phylogenèse (MeSH)</term>
<term>Protéines végétales (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Stress physiologique (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="analysis" xml:lang="en">
<term>RNA, Messenger</term>
<term>RNA, Plant</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Plant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="analyse" xml:lang="fr">
<term>ARN des plantes</term>
<term>ARN messager</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Cupressus</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Cupressus</term>
<term>Protéines végétales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Cupressus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Cupressus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cold Temperature</term>
<term>Gene Expression Regulation, Plant</term>
<term>Molecular Sequence Annotation</term>
<term>Multigene Family</term>
<term>Phylogeny</term>
<term>Stress, Physiological</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Annotation de séquence moléculaire</term>
<term>Basse température</term>
<term>Famille multigénique</term>
<term>Phylogenèse</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Stress physiologique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Cold acclimation is a complex transcriptionally controlled process regulated by many different genes and genic-interactions in plants. The northward spreading of woody species is mainly limited by winter harshness. To increase our knowledge about the biological processes underlying cold acclimation, plants evolved in warmer climates can serve as models. In this work, a Suppression Subtractive Hybridization approach using PCR-select was used to isolate Italian cypress (Cupressus sempervirens L.) transcript sequences putatively expressed under low temperature stress. After assessing the reliability of the subtractive step, a total of 388 clones were selected and sequenced. Following sequence assembly and removal of the redundant cDNAs, 156 unique transcripts were identified and annotated in order to assign them a putative functional class. Most of the identified transcripts were functionally classified pertaining to stress in cellular and chloroplast membranes, which are previously known to be severely damaged by cold treatment. Among the identified functional gene families, the extensively represented ones were dehydrins, early light-inducible proteins, senescence-associated genes and oleosins. The last three gene families were further selected for phylogenetic analysis, with the corresponding protein sequences across the complete genomes of the model plants Populus trichocarpa, Vitis vinifera, Physcomitrella patens, and Arabidopsis thaliana. The relationship with the ortholog sequences coming from these species and their further implications are discussed. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25534982</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>03</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Electronic">1559-0305</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>57</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Molecular biotechnology</Title>
<ISOAbbreviation>Mol Biotechnol</ISOAbbreviation>
</Journal>
<ArticleTitle>Identification of low temperature stress regulated transcript sequences and gene families in Italian cypress.</ArticleTitle>
<Pagination>
<MedlinePgn>407-18</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s12033-014-9833-2</ELocationID>
<Abstract>
<AbstractText>Cold acclimation is a complex transcriptionally controlled process regulated by many different genes and genic-interactions in plants. The northward spreading of woody species is mainly limited by winter harshness. To increase our knowledge about the biological processes underlying cold acclimation, plants evolved in warmer climates can serve as models. In this work, a Suppression Subtractive Hybridization approach using PCR-select was used to isolate Italian cypress (Cupressus sempervirens L.) transcript sequences putatively expressed under low temperature stress. After assessing the reliability of the subtractive step, a total of 388 clones were selected and sequenced. Following sequence assembly and removal of the redundant cDNAs, 156 unique transcripts were identified and annotated in order to assign them a putative functional class. Most of the identified transcripts were functionally classified pertaining to stress in cellular and chloroplast membranes, which are previously known to be severely damaged by cold treatment. Among the identified functional gene families, the extensively represented ones were dehydrins, early light-inducible proteins, senescence-associated genes and oleosins. The last three gene families were further selected for phylogenetic analysis, with the corresponding protein sequences across the complete genomes of the model plants Populus trichocarpa, Vitis vinifera, Physcomitrella patens, and Arabidopsis thaliana. The relationship with the ortholog sequences coming from these species and their further implications are discussed. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>La Porta</LastName>
<ForeName>Nicola</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>IASMA Research and Innovation Centre, Fondazione Edmund Mach (FEM), Via E. Mach 1, 38010, San Michele all'Adige, Trento, Italy, nicola.laporta@fmach.it.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sablok</LastName>
<ForeName>Gaurav</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Emilliani</LastName>
<ForeName>Giovanni</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hietala</LastName>
<ForeName>Ari M</ForeName>
<Initials>AM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Giovannelli</LastName>
<ForeName>Alessio</ForeName>
<Initials>A</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Fontana</LastName>
<ForeName>Paolo</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Potenza</LastName>
<ForeName>Emilio</ForeName>
<Initials>E</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Baldi</LastName>
<ForeName>Paolo</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Mol Biotechnol</MedlineTA>
<NlmUniqueID>9423533</NlmUniqueID>
<ISSNLinking>1073-6085</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010940">Plant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012333">RNA, Messenger</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003080" MajorTopicYN="N">Cold Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029781" MajorTopicYN="N">Cupressus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058977" MajorTopicYN="N">Molecular Sequence Annotation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005810" MajorTopicYN="N">Multigene Family</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010802" MajorTopicYN="N">Phylogeny</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010940" MajorTopicYN="N">Plant Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012333" MajorTopicYN="N">RNA, Messenger</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000032" MajorTopicYN="Y">analysis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013312" MajorTopicYN="N">Stress, Physiological</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>3</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25534982</ArticleId>
<ArticleId IdType="doi">10.1007/s12033-014-9833-2</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Planta. 2012 Jun;235(6):1091-105</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22526498</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2009 Apr;26(4):893-905</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19168564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2014 Mar;41(3):1385-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24407601</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2014 Jan 10;9(1):e84359</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24427285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Mar;33(3):311-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23425688</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 May;29(5):869-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17087470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biotechnol. 2010 Sep;30(3):222-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20572794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1264-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16778010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Plant Physiol. 2006 May;163(7):691-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16442665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2003 Jul;44(7):676-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12881495</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2008 May;67(1-2):107-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18265943</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 Jun;23(6):2391-404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21665998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Apr;194(1):192-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22248127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Eukaryot Microbiol. 2000 Jan-Feb;47(1):76-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10651300</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2008 Sep;55(5):798-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18485063</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 Dec;72(6):972-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23061922</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Aug;141(4):1459-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16815958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4921-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12676998</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2001 Feb;45(3):263-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11292073</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2013 Apr;33(4):398-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23564693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2013 Nov 05;8(11):e79412</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24223944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Jan;11(1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16359910</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2011 Oct;28(10):2731-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21546353</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1991 Feb;16(2):209-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1893098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2014 Jan 1;533(1):322-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24076355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1999 Jun;50:571-599</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2007;58:115-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17177638</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Integr Plant Biol. 2012 Aug;54(8):567-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22765286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Ecol. 2009 May;18(10):2276-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19389173</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2010;11(12):220</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21176179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Aug 10;12 :140</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22882870</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Aug;25(8):1033-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15929934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Photochem Photobiol B. 2012 Dec 5;117:61-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23079539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2004 Mar 19;32(5):1792-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15034147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2012 Oct;21(5):939-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160463</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Philos Trans R Soc Lond B Biol Sci. 2002 Jul 29;357(1423):909-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12171654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Jun 21;277(25):22677-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11929861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biotechnol. 2004 Feb;26(2):95-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14764934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1990 Nov;94(3):1282-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16667830</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2012 Dec;32(12):1533-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23135736</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2011 Oct;6(10):1503-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21897131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2012 May;70(4):599-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22225700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2012 Apr;25(4):496-504</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22409157</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2011 Jan;180(1):69-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21421349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(10):e47275</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23077584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2012 Jul 24;12:114</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22827966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Jun;50(6):967-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17461790</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2012 Dec;236(6):1863-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22922940</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2004 Mar;24(3):265-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14704136</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Jan;132(1):44-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18251869</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2013 Feb;40(2):893-903</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23065233</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Sep;142(1):75-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16829586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2003 Jul 1;31(13):3738-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12824407</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2012 Mar;35(3):644-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21988545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 2009 May 15;437(1-2):45-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19374025</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 May;187:89-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22404836</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2000 May;25(1):25-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10802651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Jan;197(1):123-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23078289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 1999 Sep;9(9):868-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10508846</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2005 Dec;59(6):895-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16307365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Biol Lett. 2006;11(4):536-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16983453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Oct;160(2):955-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22837359</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Rep. 2012 Feb;39(2):969-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21573796</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Italie</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Baldi, Paolo" sort="Baldi, Paolo" uniqKey="Baldi P" first="Paolo" last="Baldi">Paolo Baldi</name>
<name sortKey="Emilliani, Giovanni" sort="Emilliani, Giovanni" uniqKey="Emilliani G" first="Giovanni" last="Emilliani">Giovanni Emilliani</name>
<name sortKey="Fontana, Paolo" sort="Fontana, Paolo" uniqKey="Fontana P" first="Paolo" last="Fontana">Paolo Fontana</name>
<name sortKey="Giovannelli, Alessio" sort="Giovannelli, Alessio" uniqKey="Giovannelli A" first="Alessio" last="Giovannelli">Alessio Giovannelli</name>
<name sortKey="Hietala, Ari M" sort="Hietala, Ari M" uniqKey="Hietala A" first="Ari M" last="Hietala">Ari M. Hietala</name>
<name sortKey="Potenza, Emilio" sort="Potenza, Emilio" uniqKey="Potenza E" first="Emilio" last="Potenza">Emilio Potenza</name>
<name sortKey="Sablok, Gaurav" sort="Sablok, Gaurav" uniqKey="Sablok G" first="Gaurav" last="Sablok">Gaurav Sablok</name>
</noCountry>
<country name="Italie">
<noRegion>
<name sortKey="La Porta, Nicola" sort="La Porta, Nicola" uniqKey="La Porta N" first="Nicola" last="La Porta">Nicola La Porta</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C98 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C98 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25534982
   |texte=   Identification of low temperature stress regulated transcript sequences and gene families in Italian cypress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25534982" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020